8,177 research outputs found

    Dynamic Power Spectral Analysis of Solar Measurements from Photospheric, Chromospheric, and Coronal Sources

    Get PDF
    An important aspect in the power spectral analysis of solar variability is the quasistationary and quasiperiodic nature of solar periodicities. In other words, the frequency, phase, and amplitude of solar periodicities vary on time scales ranging from active region lifetimes to solar cycle time scales. Here, researchers employ a dynamic, or running, power spectral density analysis to determine many periodicities and their time-varying nature in the projected area of active sunspot groups (S sub act). The Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor (SMM/ACRIM) total solar irradiance (S), the Nimbus-7 MgII center-to-wing ratio (R (MgII sub c/w)), the Ottawa 10.7 cm flux (F sub 10.7), and the GOES background x ray flux (X sub b) for the maximum, descending, and minimum portions of solar cycle 21 (i.e., 1980 to 1986) are used. The technique dramatically illustrates several previously unrecognized periodicities. For example, a relatively stable period at about 51 days has been found in those indices which are related to emerging magnetic fields. The majority of solar periodicities, particularly around 27, 150 and 300 days, are quasiperiodic because they vary in amplitude and frequency throughout the solar cycle. Finally, it is shown that there are clear differences between the power spectral densities of solar measurements from photospheric, chromospheric, and coronal sources

    Energy Loss from Reconnection with a Vortex Mesh

    Full text link
    Experiments in superfluid 4He show that at low temperatures, energy dissipation from moving vortices is many orders of magnitude larger than expected from mutual friction. Here we investigate other mechanisms for energy loss by a computational study of a vortex that moves through and reconnects with a mesh of small vortices pinned to the container wall. We find that such reconnections enhance energy loss from the moving vortex by a factor of up to 100 beyond that with no mesh. The enhancement occurs through two different mechanisms, both involving the Kelvin oscillations generated along the vortex by the reconnections. At relatively high temperatures the Kelvin waves increase the vortex motion, leading to more energy loss through mutual friction. As the temperature decreases, the vortex oscillations generate additional reconnection events between the moving vortex and the wall, which decrease the energy of the moving vortex by transfering portions of its length to the pinned mesh on the wall.Comment: 9 pages, 10 figure

    Vortex nucleation by collapsing bubbles in Bose-Einstein condensates

    Full text link
    The nucleation of vortex rings accompanies the collapse of ultrasound bubbles in superfluids. Using the Gross-Pitaevskii equation for a uniform condensate we elucidate the various stages of the collapse of a stationary spherically symmetric bubble and establish conditions necessary for vortex nucleation. The minimum radius of the stationary bubble, whose collapse leads to vortex nucleation, was found to be about 28 healing lengths. The time after which the nucleation becomes possible is determined as a function of bubble's radius. We show that vortex nucleation takes place in moving bubbles of even smaller radius if the motion made them sufficiently oblate.Comment: 4 pages, 5 figure

    Parity violation in quasielastic electron-nucleus scattering within the relativistic impulse approximation

    Get PDF
    We study parity violation in quasielastic (QE) electron-nucleus scattering using the relativistic impulse approximation. Different fully relativistic approaches have been considered to estimate the effects associated with the final-state interactions. We have computed the parity-violating quasielastic (PVQE) asymmetry and have analyzed its sensitivity to the different ingredients that enter in the description of the reaction mechanism: final-state interactions, nucleon off-shellness effects, current gauge ambiguities. Particular attention has been paid to the description of the weak neutral current form factors. The PVQE asymmetry is proven to be an excellent observable when the goal is to get precise information on the axial-vector sector of the weak neutral current. Specifically, from measurements of the asymmetry at backward scattering angles good knowledge of the radiative corrections entering in the isovector axial-vector sector can be gained. Finally, scaling properties shown by the interference γ−Z\gamma-Z nuclear responses are also analyzed.Comment: 15 pages, 11 figure

    Global analysis of parity-violating asymmetry data for elastic electron scattering

    Get PDF
    We perform a statistical analysis of the full set of parity-violating asymmetry data for elastic electron scattering including the most recent high precision measurement from QQ-weak. Given the basis of the present analysis, our estimates appear to favor non-zero vector strangeness, specifically, positive (negative) values for the electric (magnetic) strange form factors. We also provide an accurate estimate of the axial-vector nucleon form factor at zero momentum transfer, GAep(0)G_A^{ep}(0). Our study shows GAep(0)G_A^{ep}(0) to be importantly reduced with respect to the currently accepted value. We also find our analysis of data to be compatible with the Standard Model values for the weak charges of the proton and neutron.Comment: 6 pages, 4 figures, 2 tables. Accepted for publication in PR

    Parity violation and dynamical relativistic effects in (e⃗,e′N)(\vec{e},e'N) reactions

    Get PDF
    It is well known that coincidence quasielastic (e⃗,e′N)(\vec{e},e'N) reactions are not appropriate to analyze effects linked to parity violation due the presence of the fifth electromagnetic (EM) response RTL′R^{TL'}. Nevertheless, in this work we develop a fully relativistic approach to be applied to parity-violating (PV) quasielastic (e⃗,e′N)(\vec{e},e'N) processes. This is of importance as a preliminary step in the subsequent study of inclusive quasielastic PV (e⃗,e′)(\vec{e},e') reactions. Moreover, our present analysis allows us to disentangle effects associated with the off-shell character of nucleons in nuclei, gauge ambiguities and the role played by the lower components in the nucleon wave functions, i.e., dynamical relativistic effects. This study can help in getting clear information on PV effects. Particular attention is paid to the relativistic plane-wave impulse approximation where the explicit expressions for the PV single-nucleon responses are shown for the first time.Comment: 39 pages, 9 figure

    Direct measurement of quantum phase gradients in superfluid 4He flow

    Full text link
    We report a new kind of experiment in which we generate a known superfluid velocity in a straight tube and directly determine the phase difference across the tube's ends using a superfluid matter wave interferometer. By so doing, we quantitatively verify the relation between the superfluid velocity and the phase gradient of the condensate macroscopic wave function. Within the systematic error of the measurement (~10%) we find v_s=(hbar/m_4)*(grad phi)

    Spontaneous squeezing of a vortex in an optical lattice

    Full text link
    We study the equilibrium states of a vortex in a Bose-Einstein condensate in a one-dimensional optical lattice. We find that quantum effects can be important and that it is even possible for the vortex to be strongly squeezed, which reflects itself in a different quantum mechanical uncertainty of the vortex position in two orthogonal directions. The latter is observable by measuring the atomic density after an expansion of the Bose-Einstein condensate in the lattice.Comment: 8 pages, 3 figures, more details added, some new citation

    Pseudo-contact angle due to superfluid vortices in 4^{4}He

    Full text link
    We have investigated spreading of superfluid 4^{4}He on top of polished MgF2_2 and evaporated SiO2_{2} substrates. Our results show strongly varying contact angles of 0 - 15 mrad on the evaporated layers. According to our theoretical calculations, these contact angles can be explained by a spatially varying distribution of vortex lines, the unpinning velocity of which is inversely proportional to the liquid depth.Comment: 10 pages, 4 figure
    • …
    corecore